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Abstract

Structure from motion often refers to the computation of 3D structure from a matched
sequence of images. However, a (relative) depth map of a surface may not be a good
representation for storage and recognition; a more concise representation seems necessary.
The sign of the Gaussian curvature of a surface is one candidate to be a part of a useful
representation of the surface. I will show that in order to compute the sign of the Gaussian
curvature it is not necessary first to go through the computationally expensive and error
sensitive process of recovering the exact function of the surface and the motion parameters. y, ===

I will first show that the sign of the normal curvature in a given direction at a given _  --——- ‘
point in the image can be computed from a simple difference of slopes of line-segments in - a
one image. Using this result, local surface patches can be classified as convex, concave,
parabolic (cylindrical), hyperbolic (saddle point) or planar. At the same time the transla-
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tional component of the optical flow is obtained, from which the focus of expansion can be * '™t~ ~———
computed. In addition, the axes of principal curvature and the axes of zero curvature are =~~~
obtained. BY e e
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1 Introduction

When a scene is recorded from two (or more) different positions in space, objects are projected
into different locations in each image. The disparity in position between the two images may
be wzed to obtain the exact coordinates of objects if tue motion of the camera relative to each
object is known. This view of motion and stereo regards vision as a problem of inverse optics.
namely, the goal is to find the inverse transformation of the optical imaging process (perspective
projection). The computation is usually divided into two main steps. The first is correspon-
dence: matching features in the two images to find the appropriate disparity in position for
each object or feature. This may be a difficult computation for many image pairs. In stereo
in particular it is considered the heart of the computational problem (e.g., [1]). Henceforth I
will assume that matching is given. The second step is the determination of the motion (or
camera) parameters that can be used to compute the distance to objects in space using geo-
metrical transformation. This is, in general, a very difficult computation. T will discuss some
important higher level goals for which it can be avoided. For these limited goals solving the
second subproblem may be unnecessary.

The problem of computing the motion parameters from motion disparities or optical flow
{local velocities) has re-eived much attention. The corresponding problem of camera calibration
in stereo, however, is olten ignored. This attention is often motivated by the assumption that
this computation is a prerequisite for higher level tasks such as navigation or recognition. For
example, for the compu-ation of a complete 3D structure from motion the motion parameters
should be known. Structure from motion results often deal mainly with the minimal number of
points that are necessary to compute the inverse transformation (see [2]). For this purpose it has
been shown that 7 or 8 matched points in two views ([3] and [4]) or 5 points and their velocities
in one view ([5]) are sufficient. The actual algorithms, however, are typically computationally
expensive and sensitive to noise. It is hard to guarantee a sufficiently good estimation of the
motion parameters to maintain small errors in the structure computation (see [6]).

General motion can be decomposed into a rotation around some axis followed by a trans-
lation. In a similar way the optical flow vector can be decomposed into two components: one
due to the translation component of the motion and one due to the rotation component. In
perspective projection and if the motion is translation only, the optical flow takes a very simple
form: straight lines that intersect at a single point, the focus of expansion (FOE), see figure 1.
This point is the projection of the point towards which (or away from which) the camera’s
motion is directed. If the motion is rotational only, the flow field takes the form of concentric
circles (see figure 1). It has been argued that if we can identi{y the two components of the flow
field then the problem is almost solved, the direction of motion and relative depth of all points
can be coraputed from the translational component of the motion (see {7]).

Because of the practical difficulties in devising a robust algorithm that will find a complete
solution of the problem, the need for a more qualitative approach to motion analysis and to
vision in general has been expressed (e.g., [8], [9) and [10]). It has been motivated in part by
the experimentally plausible hypothesis that human vision does not compute the exact inverse
mapping of the projection of a 3D world onto a 2D retina. In addition for many purposes, such
as navigation, it has been shown that the complete solution of the motion parameters may not
be necessary (e.g.. [11] and [12]). The computation of an exact 3D structure may not even be
necessary for recognition. The exact 3D coordinates of a surface do not seem to be a good
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Figure 1: An example of an optical flow, left: translation only, right: rotation only.

representation for either storage or recognition (see {13]), a more concise representation seems
necessary. The sign of the Gaussian curvature of a surface is one candidate to be a part of a
useful representation of the surface. In accordance with this view, Koenderink and van Doorn
(see, [14], {15] and [i6]) have proposed an alternative theor.’.cal approach to the analysis of
stereo and motion (assuming matching is given). They show how various qnalitative properties
of objects and the motion field are related to invariants of a vector field (the optical flow or
stereo disparity field).

In this work I will discuss some motion and shape characteristics that can be computed
directly from motion and stereo disparities with a very simple operator. It is not necessary to
go first through the computationally difficult and error sensitive process of recovering the exact
function of the surface and the motion parameters. Thus additional errors in the computation
caused by using motion parameters that have been obtained from noisy data are avoided. It
should be noted that the computation of the shape features discussed here is not immediate
even when a complete 3D reconstructed surface is given (see [13] and [17]).

First, the sign of the normal curvature of a curve : surface is computed from following
three points on the curve that are collinear in one i3z, If the points remain collinear in
the other image, the normal curvature is 0. In forwaru . otion, if the smaller angle created
by the three points in the other image is turned towards the focus of expansion (FOE), the
sign is negative. If the smaller angle is turned away from the FOE, the sign is positive. In
backward motion the sign reverses. Note that the direction of the normal to the surface is not
needed for this computation. Although perspective projection is assumed, otherwise the focus
of expansion is not defined, its effects on motion disparities can be large or negligible (in the
orthographic projection limit).

Regardless of the location of the FOE, this simple operator can be computed at a selected set
of directions around a point to determine the sign of the Gaussian curvature of a local surface
patch, an intrinsic property of the surface. From this analysis, the direction of the translational
component of the motion is immediately obtained. From this component it is possible to obtain
the focus of expansion (FOE). The location of the FOE can be used to complete the classification




of local surface patches as convex, concave, parabolic (cylindrical), hyperbolic (saddle point)
or planar. In addition. the directions of the axes of zero curvature, and hence the directions of
the principal axes. are also immediately obtained from this computation. The analysis does not
depend upon special constraints on the nature of objects in the environment, such as assuming
smoothly curved surfaces or a particular analytic representation of the surface.

The rest of the paper is organized as follows. In section 2 I review the basic differential
geometry concepts of normal curvature and Gaussian curvature and their potential usefulness
for object representation. In section 3 I show how surfaces are classified and the focus of
expansion is computed as described above. In stereo the ambiguity of a region with positive
Gaussian curvature can be resolved without additional computations, as shown in section 3.3. In
section 4 I show that the simple sign operator described in section 3 is almost as accurate in the
presence of noise as the best algorithm that uses the 3D coordinates obtained from the same
noisy data and using perfect motion parameters (i.e. uncorrupted inverse transformation).
Since one would expect the noise to corrupt the motion parameters estimation significantly,
the sign algorithm that uses 2D projections directly seems to be more robust. In section 5 I
discuss the possible relevance of these results to biological vision. I also discuss the relation to
some literature about structure from motion. The proofs of the results discussed in section 3
are given in the appendix.

2 Surface curvature and its importance to object representa-
tion

The normal curvature of a 3D curve on a regular surface through some point is its curvature
with respect to the normal to the surface. That is, the curve is projected on a plane that
includes the normal and its tangent (a normal section) and the curvature of the projected
planar curve is the normal curvature of the original 3D curve, see figure 2. The curvature of a
curve relative to the normal to the surface is what determines the curvature of the surface. For
example, if all normal curvatures are negative, namely all the curves are convex relative to the
normal, the surface is convex. If all are concave, the surface is concave. If some are convex and
some concave, the surface is hyperbolic, i.e. it has a saddle point.

The normal curvature of all the curves on the surface through some point can be written
as a linear combination of two principal curvatures k1 and k2. These are the curvatures of two
perpendicular curves on the surface, the principal axes, that obtain the extrema of the normal
curvatures of all curves on the surface passing through the same point. Let k., denote the
normal curvature of some curve on the surface that makes an angle # with the first principal
axis. Then

Kn = K1 -€0s2 0 + kg -sin? @ . (1)

Thus the local curvature of a local surface patch can be described in terms of two numbers only,
k1 and k. The product of the two principal curvatures x; - K; is called the Gaussian curvature
of the surface. It characterizes the surface independently of the environment.

The sign of the Gaussian curvature locally classifies the surface as follows:

1. elliptic (k- k2 > 0),
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Figure 2: The normal curvature of a 3D curve u on a surface, whose tangent through P is w.
Below is the projection of the curve on the normal section. Left: a convex example (negative
curvature), right: a concave example (positive curvature).
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Figure 3: An illustration of the different surface types used for classification of surfaces, see
text.




e convex. see figure 3a-left {x;,x; < 0)

e concave, see figure 3a-right (k,, Ky > 0)
2. parabclic (cylindrical), see figure 3b (x; - Ky = 0. Ky > 0 or Ky < 0),
3. hvperbolic {saddle point), see figure 3¢ (k) - K2 < 0, 1.e. k3 > 0 and k2 < 0),
1. planar (k) - k2 =0, Ky = Ky =0).

It follows from equation (1) that the number of asymptotes, or the number of curves on the
surface with zero-curvature, determines the type of the surface. Namely,

1. elliptic: no asymptote,

2. parabolic: one asymptote,

3. hyperbolic: two asymptotes,

4. planar: infinite number of asymptotes.

Thus for surfaces where the asymptotes are locally straight lines on the surface, the number of
straight lines on the surface that cross a point will determine the type of the surface. Various
cues like intensity gradients (see [18]) can be used to determine whether 2 straight line in
the image originated from a straight line on the surface (and thus of zero-curvature). Motion
and stereo disparities help determine the sign of the curvature in between the zero-curvature
directions which is necessary for surface classification (see section 3).

The shape of most objects can be described by an analytic function of the surface, i.c.
a relative depth map. For purposes of storage efficiency and recognition, a complete depth
map seems wasteful. As a representation it is sensitive to viewing direction and noise; it is
computationally expensive to match at a recognition stage; and it does not easily generalize to
give a single representation for similar objects. One alternative is representing the shape of an
object as a collection of parts where each part is described by a few surface features. Classifying
regions as convex, concave, planar, cylindrical, or hyperbolic provides one important intrinsic
surface feature. This classification can also help in finding part boundaries within an object
(figure 4a) that occur often at parabolic lines. Often the axes of principal curvature and axes
of zero-curvature, like parabolic lines that are the boundaries between different surface types,
give important directions on the surface (figure 4b).

3 Shape classification

3.1 Surface curvature and FOE from motion disparities

Henceforth perspective projection and a motion with nonzero translational component are as-
snmed so that the focus of expansion (see section 1) is defined. Under these conditions the
analysis holds at the orthographic projection limit (that is, the perspective projection has neg-
ligible effect on the disparities yet the FOE is defined). In this limit the motion should not be
translation in depth only.
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Figure 4: Why classify surfaces: a) the classification may help divide an object into parts; b)
axes of principal curvature are often meaningful curves on the surface. The dashed lines are
parabolic lines.

Proposition 1 Let Py denote a point on the surface of some object whose projection in the
first image is Op. Let Py and P, denote two other points on the same surface whose projections
in the first image are Oy and O3, and where Og, Oy and O are collinear. Let Oq, O;, and O,
be the projections of the same three points in a second image. Assume the motion is backward
(away from the focus of expansion). Then the sign of the normal curvature of the curve (
passing through Py, Py, and P, can be determined as follows:

o if the smaller angle through Og, Oy and O, is turned towards the focus of expansion then
the normal curvature of { is positive (see figure 5a).

e if Oo, O1 and O3 are collinear then the normal curvature of ¢ is 0 (see figure 5b).

e if the smaller angle through Oy, O, and O, is turned away from the focus of ezpansior
then the normal curvature of  is negative (see figure 5c).

In forward motion (towards the focus of ezpansion), the interpretation of the angle is reversed.
(The motion of the coordinate system is defined to be a rotation followed by a translation.)

A proof is given in the appendix. It consists of two steps. First, it is shown that the sign of the
normal curvature, the sign of a curve’s curvature relative to the normal to the surface, equals
the sign of the curvature relative to the line of sight in the first image. Thus the direction of the
normal is not needed for this computation. Second, it is shown that the sign of the curvature
relative to the line of sight equals the sign of the curvature relative to the line through the FOE
and the curve in almost any 2D perspective projection of the curve, e.g. in the second image.

Figure 6 illustrates the implication of proposition 1. In a concave region, three collinear
points in the first image will move to three non-collinear points in the second image turning
towards the focus of expansion.

In practice I compute the difference of the slopes of the line segments through Og and O,
and through Oy and O,, angles 8; and 8, in figure 5a. Thus, if O; = (zi,yi). the sign operator
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Figure 5: The sign of the normal curvature is determined by the relation between the angle
through three points in the second image, that are collinear in the first image, and the focus of
expansion. Above is the first image, Op, O; and O; are collinear. Below are the corresponding
points in the second image Og, O: and O,: a) the normal curvature is positive, b) the normal
curvature is 0, ¢) the normal curvature is negative.

FOE

Figure 6: In a concave region, collinear points (left) move to noncollinear points (right) that
are turning towards the focus of expansion.
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The dependence of the relation between the sign of T and the sign of 1he normal carvitnre
on the location of rthe FOE is summarized in the following proposition {proof is given in the
appendix):

Proposition 2 Choose O and O, so that they are collinear with Oy and lie on different sides
of Oy. Assume backward motion (the motion is defined now as a transiution followed by «
rotationj. If O, is chosen such that the angle through O,. Qg and the FOE going clockwise is
~maller than 130°, that is. Oy is above the sign-bisector in figure 5. then the sign of T equals
the sign of the normal curvature of (. If Oy is chosen so that the angle is larger than 1509 then
the sign of T is opposite to the sign of the normal curvature of (. If the angle equals 1807 then
the sign of T is identically 0.

One result of proposition 2 is that if O, is chosen around Ogq in all orientations between 0" and
360°. the correlation between the sign of T and the sign of the noriual curvature reverses at
the orientation where 0. Ug and the FOE are collinear (g in figure 5). The direction where
T changes sign will be used later to compute the direction of the translational component of
the motion at Fp.

Now it is possible to classify the surface near a point Py using the following simple algorithm:
In the first image. for each direction r from a sample set of directions around Qg (see upper
part of figure 5) choose two points in the image O; and O; on both sides of Oy so that they are
collinear and U, defines a slope 7. It is assumed that O; and O, are the projections of points
lving on the same surface as P;. Choose O; at all orientations 7 around Og. 0° < 7 < 360°.
Compute T(7) tor all 7. Then:

-

¢ Y{r) changes sign twice (see figure 7 above) = surface is elliptic.

e T(r) changes sign twice and obtains the value 0 for some other directions 7 and 7 + 150~
without changing sign = surface is parabolic,

e T(r)=0 = surfaccis planar,

e Y(r) changes sign six times (see figure 7 below) = surface is hyperbolic.
(the sign clianges four times at ax-> of zero-curvature and twice at the sign-bisector.)

In the presence of noise, some threshold should be used instead of 0, which may cause regions
whose curvature is low to be classified as planar.

The sign of T(r) is ambiguous when the location of the FOE is not known. It gives the
sign of the normal curvature for a range 7o < 7 < 19 + 180° for some 7y and the inverse sign
for other values of 7. The direction 7 is denoted sign-bisector (see figure 7). It is the direction
where T(7) changes sign independently of the normal curvature.

The same 7, gives the direction of the translational component of the motion at Py. This
motion component can be used to obtain the focus of expansion and relative depth. In the
elliptic case it is the only direction along which Y(7) changes sign (figure 7). All such lines
at angles 7o( Py) for different points Py intersect at a single point — the FOE (see figure R). In
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Figure 7: The sign of T(r) depends on the relative position of O; with respect to Og and the
FOE. In the figure. the circle represents possible locations of O}, the +/- inside indicates the
sign of T(r) whereas the sign of the normal curvature is given in parentheses. Above is the
elliptic case. below is the hyperbolic case.




the hvperbolic case. T(r) changes sign at three directions (six orientations), as is illustrated in
figure 9 right. Two are axes of zero-curvature and a third is the translational component of the
motion. The third axis of sign change of Y(7) at all the points intersect at the FOE.

The location of the FOE can be used to complete the surface classification with T(r) if O,
is chosen so that the angle between Oy. Og and the FOE when going clockwise is smaller than
1307, The classification algorithm is now:

e T(r)=0 VYr = surface is planar.
e Y(7)>0 ¥r = surface is concave.
e T(r)< 0 Vr = surfareis convex.

e T(r}) >0 Vror T(r) <0 Vr = surface is parabolic (cylindrical). The axis of zero
curvature is the axis for which T(r) = 0.

e Y(7) changes sign = surface is hyperbolic. In this case the asymptotes are the directions
for which T(r) = 0. The principal directions (direction of minimum and maximum
curvature) are the lines that cross the two angles defined by the asymptotes.

Note that this classification is done without the computation of the normal to the surface.

To summarize, by computing the sign of T(7) for all 0° < 7 < 360° we can classify a surface
as elliptic, hvperbolic, planar, or parabolic. At each point we also obtain the direction of the
translational component of the motion. By using more than one point we are able to compute
the location of the focus of expansion and thus further classify an elliptic region as convex or
concave. In a hyperbolic region we obtain at each point three axes, two of which are axes of
zero-curvature and one is the translational component of the motion. From the two axes of
zero curvature we can compute the principal axes, the axes of minimal and maximal curvature,
that are the two angle bisectors of the two axes of zero-curvature.

3.2 Examples:

Synthetic objects (a sphere and a torus) have been classified using the following algorithm:
For each pixel (denoted Fp) in the first image that belong to the object:

1. for each 7 in the range —90° < 7 < 90°, with 1° increments:

(a) find two points on both sides of P, that belong to the object and so that the three
points are collinear with slope 7.

(b) find the coordinates of the three points in the second image by computing the motion
transformation.

(¢} compute T(7).
2. count the number of zero-curvature axes:

(a) count the number of zero-crossings of (7).
(b) count the number of zero-touchings of T(r).

(c) add the two numbers and subtract 1 (for 7, see figure 7).
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(d) save the zero-crossings and the the zero-touchings. The single zero-crossing in the
parabolic and elliptic cases is the translation component of the motion at Fy. The
zero-touching in the parabolic case is the axis of zero curvature. The three zero-
crossings in the hyvperbolic case are the translation component of the motion at [}
and the two axes of zero curvature.

3. classifv P, as elliptic. parabclic, planar or hyperbolic according to the number of axes of
zero-curvature.

4. Classify further an elliptic point:

(a) if the location of the FOE is not known and more than two points have already been
analvzed. compute the location of the FOE. Go to the next point if the location
of the FOE is not known or if it is not known whether the motion is backward or
forward.

(b) take the sign of T(7) at 7 = 90°.
(¢) reverse the sign if forward motion.

(d) reverse the sign if the z coordinate of Py is smaller than the r coordinate of the
FOE.

(e) if the final sign is negative than the surface is convex, otherwise it is concave.

The first example is a synthetic sphere. The motion of the sphere was a translation of
{(2.—=2.10}, rotation of 13° around the X-axis, rotation of —20° around the Y -axis, and rotation
of 5° around the Z-axis. The center of the sphere was initially located at (0,0,50), with radius
20. It had moved 2.7° of arc. The zero-crossing of T(r), i.e. the translation component of the
motion. is shown in figure 8 at arbitrary three points on the sphere. The three zero crossings
intersect at the FOE. Figure 8 also illustrates the resulting classification: all the points on
the sphere have been correctly classified as convex which is shown by the particular greyv level
assigned to all of them.

The second example is a synthetic torus. The motion of the torus was the same as that
of the sphere. The center of the torus was initially located at (0,0,50), with large radius 10
and small radius 5. The zero-crossings of T(r) are shown in figure 8 at arbitrary four points
on the torus, two elliptic points and two hyperbolic points. Figure 9 illustrates the resulting
classification: the torus had been correctly classified as being composed of a convex region on
the outside and a hyperbolic region in the inside. The two classes are marked by different grey
levels. Note the emergence of the parabolic line on the torus (the line separating the hyperbolic
region from the - avex region, whose type is parabolic). It is often argued that these parabolic
lines are impe - . for image representation (see [17}).

3.3 Surfa.e ¢ v :iture from stereo disparities

With genera: motiun we had to know the location of the focus of expansion to disambiguate
completely the sign of T(7) at a single point. The least we had to do was to repeat the analysis
in more than one poirt in order to locate the focus of expansion. This computation is useful by
itself, since the location of the focus of expansion is important for other purposes like navigation.
However, we can use the limited knowledge on the relative location of the two cameras that is

11




Figure 8: Classification of a sphere from two images taken in motion, see text. Left: the optical
flow vectors do not intersect and do not reveal much about the motion. Right: the translational
components of the motion field intersect at the focus of expansion.

Figure 9: Classification of a torus from two images taken in motion, see text. The final clas-
sification is shown by the shading: light grey for hyperbolic and dark grey for convex. Left:
the optical flow vectors, right: the zero-crossings of T(r): the axes of zero curvature and the
translation component of the motion.




available if the two images are obtained as a stereo pair. In this case it is possible to obtain
at each point the coordinates up to a scaling factor {like in perspective projection) in a new
coordinate svstem whose focus of expansion is fixed. it is the origin of the coordinate system in
either of the cameras. Thus it will be sufficient to apply the sign operator at a single point to
be able to classify it fully. namelyv. disambiguating the elliptic case to convex or concave.

[ make the following assumptions: given two cameras, assume that the principal rays inter-
sect at a fixation point. Assume also that the plane that passes through both cameras and the
fixation point includes the \'-axes of both cameras. The following coordinate system will be
used (see figure 10): let the fixation point be the origin, the plane through the origin and the

by

RIGHT CAMERA

Figure 10: Above, the 3D coordinate system defined by two cameras. Below. the image plane
of the right camera. Point O is the projection in the image plane of the 3D point P. Its polar
coordinates K and @ are shown.

two cameras be the X — Z plane, and the line perpendicular to this plane through the origin be
the Y.axis. On the X — Z plane, the principal rays of both cameras intersect at the origin and
create an angle 2y between them. Let the Z-axis be the angle-bisector of 2u, and the X-axis
perpendicular to the Z-axis.

Let P = 2(z,y,1)in the new coordinate system. Let (R, ;) and ( R,,¥.) be the projections

13




in polar coordinates of P on the left and right images respectively (see figure 10). Then the
following holds (see [19]):
_ cot U, + cot _ 2sin p
T=tanp cotd, —cothy ' y= cot U, — cot W

Now the “first” image in the previous section will be one of the two actual images and
the "second™ image will be the perspective projection in the coordinate system defined above.
Thus the focus of expansion in the first image is the origin of the camera. The sign bisector
at direction 1, the orientation along which T(7) changes its sign regardless of the sign of the
normal curvature, is the line connecting Op to the origin. Therefore the sign of T(r) can be
directly used to obtain the sign of the normal curvature. For convenience, I compute T(r) as if
the perspective projection in the second coordinate system is on the X — Z plane, a modification
that does not affect any of the underlying arguments. Thus,

_ (cot v} —cot ) — (cot vl ~ cot ¥2)  (cot¥? — cot ¥P) — (cot ¥? — cot ¥?)
" (cot 9! = cot ¥9) + (cot VF — cot ¥9)  (cot 92 — cot ¥9) + (cot v? — cot ¥9)

Ts(7) (3)
If Op = (z0,Y0). then 79 = arctan %95 Thus if Oy = (z1,%) is chosen so that arctana’rﬁ’c’; <
arctan % < (arctan %% + 180°) then from proposition 2 the sign of Y, () gives the sign of
the normal curvature unambiguously. The same algorithm can.now be used to classify surface
patches from stereo disparities.

The classification algorithm used in the following examples is as in section 3.2, with the
following difference:

1. Ts(7) is computed instead of T(r).

2. thesign of T(7)at 7 = 90° needs to be reversed only if the signs of the z- and y-coordinates
of Py are opposite (here we use the fact that the effective FOE is located at the origin of
the coordinate systems).

3. using the origin as the FOE, the zero-crossings of T ,(7) that correspond to the two zero-
curvature axes in the hyperbolic case and the single zero curvature axis in the parabolic
case are isolated, from which the maximum and minimum curvature axes are immediately
obtained. In the elliptic case the axes of minimum curvature is estimated by the 7 that
minimizes T, (7), and the maximum curvature axis is the perpendicular axis.

Figure 11 shows classification results for synthetic data of a torus, a cylinder, a cone, a
hyperbola and a sphere. All the objects but the torus were centered at (20,20,50) (in the above
coordinate system) with the other parameters set to 4. The torus was centered at (20,20, 20),
with big radius 8 and small radius 4. The convergence angle of the camera (2u) was 30°. The
distance between both cameras and the fixation point was 150 for the torus and 50 for the other
objects. The shadings are explained in the legend of the figure. The results are accurate both
for surface classification and the directions of the principal and the zero axes.

3.4 The computation of a 1D curvature

We have computed the sign of the surface curvature at a point by computing the sign of the
curvature of curves whose tangents span all directions in the tangent plane of the surface at the
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Figure 11: First row, left: a sphere, middle: a torus, right: inside a torus. Second row, left: a
hyperbola, middle: a tilted cylinder, right: a double cone. The shadings mean the following:
surface classification: the lightest grey marks hyperbolic regions (internal rings in both toruses,
the hyperbola), darker shade of grey marks parabolic regions (cylinder and cone), darker grey
marks convex regions (sphere, external ring of torus), and the darkest grey marks concave
regions (external ring of inner torus);

axes: white marks axes of zero-curvature, grey marks axes of minimum curvature or maximal
negative curvature, and black marks axes of maximal curvature.
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point. Each of these curves was defined by three [oints on the surface and had the property
that the projections of the three points in the first image were collinear. In this case the sign of
the 2D curvature of the projections of the three points in the other image relative to the FOE
gave the sign of the 3D curvature of the 3D curve on the surface. This is also the sign of the
normal curvature at the direction of the tangent to this 3D curve.

This scheme can be generalized to estimate the sign of the curvature (though not the normal
carvature) of other 3D curves defined by three points in the two images. A generalized rule
would be the following: let o be the 2D angle between three points in the first image (see
figure 12). 0 < a < 90° if the angle is turned towards the FOE in that image and 90° < a < 180°
otherwise. Thus for backward motion, if a increases from the first image to the second. the sign
of the curvature is positive, otherwise it is negative (figure 12a). This generalized rule vields
the correct sign in many cases. Figure 12b illustrates the deterioration in performance when
the angle a between the three points in the first image, which measures the deviation from
collinearity, increases.

a § 100
2
§
£ wl
8
. Q
-
FOE "o —P)  fOE .;
. 8 sl
2
63t
a
w . - y - y_— J
first image second image ] 10 20 30 40 &0
20 curvature (angle in degrees)
s} b)

Figure 12: a) an example of the change in the 2D curvature of three points originating from a
concave curve in 3D from one image to the next. In the upper and middie examples 0 < a < 90°,
in the lower example 90° < a < 180°. b) The generalized rule (see text) is not exact, its
performance deteriorates with the amount of deviation from collinearity in the first image (a
in the text). In this example the motion is a translation of (10,0, 10), rotation of 10° around
the X-axis, rotation of ~10° around the Y -axis, and rotation of 10° around the Z-axis.

4 Sensitivity to errors

Small errors in the data due to quantization errors in discrete data and noise have quite devas-
tating effects on the estimation of local surface type. This is true for any algorithm, therefore
the data (either disparities or reconstructed depth) has to be substantially smoothed before the
surface type can be meaningfully computed. To estimate the error rate before smoothing, I
compute the percent of correct evaluation of the sign of the normal curvature at all directions
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over all the surface (that is. at the same data points that were used for the previous classification
examples).

The error rate is first computed for the simple 2D algorithin described in section 3. It is
compared to the error rate of the best alternative algorithm (both before smoothing). This
alzorithm estimates the 3D coordinates of a matched pair by the point closest to two 3D ravs.
each passes through one camera and the projection of the feature on its image. (These rays
ideally intersect at the exact location of the feature in 3D). The algorithm uses a perfect knowl-
edge of the motion or camera parameters, therefore the usually large errors introduced while
computing these parameters from the noisy data itself are artificially avoided. As expected.
when the recursive error due to the computation of the motion parameters from noisy data is
eliminated, the best exact algorithm does better than the 2D algorithm, but not much better.
The results of the comparison are given in table 1 for stereo and table 2 for motion. Data is
given for different ob jects. different resolution levels (measured in the number of pixels in the
intervals | Oy — Og || or || O, = Og ||), and different noise levels (where the standard deviation
is measured in percent of the intervals || Oy — O || or || Oz — Og |))-

noise error rate
object resolution | SD 2D algorithm | best 3D algorithm | difference
cylinder | — 10% | 35% 30% 5%
sphere — 10% | 37% 29% 8%
hvperbola | — 10% | 32% 26% 6%
hyperbola | 10 — | 15% 9% 6%
hyperbola | 5 — 1 26% 17% 9%
torus 10 — 1 23% 19% 4%
torus 50 — 6% 3% 3%
torus —_ 10% | 41% 32% 9%
torus — 4% 26% 18% 8%

Table 1: Curvature from stereo: the first column gives the object type, the second column
gives the resolution (see text) if it is finite, and the third column gives the standard-deviation
of the noise in percents (see text) if there is any. The next two columns give the error rate
for the 2D algorithm described in the previous section and the best 3D algorithm using exact
motion parameters (see text). The last column gives the difference in error rates between the
two algorithms.

In the 2D curvature from motion algorithm, small angles of curvature may be classified as
zero-curvature when the resolution is finite. Such directions are ignored in the computation of
the error rate. For finite resolution I compute the error rate in two cases: first subcolumn in
table 2 is the regular error rate as before; second subcolumn in figure 2 is the error rate if the
task is performed with hyperacuity that is an order of magnitude better than visual acuity. If a
biological visual system uses its ability to compute the orientation of three points with an order
of magnitude higher precision than visual acuity (Vernier acuity), then the second subcolumn
may give a better comparison for its error rate (see section 5).
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error rate
noise 2D algorithm
object | resolution | SD regular  hvperacuity | best 3D algorithm | difference
cvlinder — 10 3% - 39% V4
sphere —_— 10% | 12% —- 35% %
sphere 10 —— | 28% 3% 20% 8%
hyperbola | — 8% | 43% — 35% R%
hyperbola | 10 — |} 28% 8% 22% 6%
torus 10 - = 35% 16% 32% 3%
torus 20 — | 28% 8% 21% %
torus — 1% 11% - 35% 6%
torus — 8% 16% — 12% 1%

Table 2: Curvature from general motion: translaiion (10, ~10,10) and rotation 15° around the
X-axis. —20° around the Y-axis, and 5° around the Z-axis. The columns are as in table 1.
with a difference that two error rates are given for the 2D approximate algorithin in the finite
resolution cases (see text).

5 Discussion

The curvature operators described in section 3 can be implemented by a biological system
with high precision. From Proposition 1 we see that the operator that gives the sign of the
normal curvature has to check whether three points are collinear or otherwise how the angle
between them is oriented. This is an example of a hyperacuity task (see [20] pp. 337 for a
review), namely, the precision with which it can be done is ten times higher than the visual
acuity. Thus, the biological system may be capable of computing the sign of the curvature
directly, without recourse to an operator similar to T. Because of the hyperacuity resolution.
the expected error rate, which is already of the same order of magnitude as the error rate of
the best 3D algorithm that uses known motion parameters, should be significantly lower (see
table 2). Also, the algorithm that computes shape type involves only line operators at different
orientations. This is consistent with known biological architectures.

Koenderink and van Doorn ([14]) showed that some important features, the sign of the
Gaussian curvature for example, are related to motion invariants of vector fields (e.g., shear).
Ihese results are derived using vector field analysis and therefore assume the existence of a
differentiable vector field (though singularities are addressed in [21]). The results are less gen-
eral in that the curvature is assumed to be large relative to the distance to the object. and
the angular part of the rotation is assumed small. It is also not clear how the appropriate
vector field invariants can be computed. Finally, the sign of the Gaussian curvature does not
provide a complete classification of surfaces with respect to the viewer (i.e., the distinction
cunvex/concave). I have shown above that some interesting quantities (the sign of the Gaus-
sian curvature and the absolute sign of the normal curvature) can be computed with simple
hyperacuity detectors at different orientations. The analysis is exact, the only approximation
is in the computation of the curvature of a planar curve using discrete data. (It is interesting
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to note here that Koenderink and van Doorn {16} have suggested the use of difference of slopes
of line segments to approximate the shear of the stereo vector field. This is in fact the operator
used above (equation 2) to determine the sign of the normal curvature.)

One can also regard the 2D algorithm of section 3 as a way to compute the direciion of
motion: the focus of expansion and the direction of the translational component of the mo-
tion. The location of the FOE is obviously important for navigation, and (the exact value of)
the translational component of the optical flow can give relative depth. Longuet-Higgins and
Prazdny ([7]) have shown that these quantities can be computed from the optical flow and
described two algorithms to compute them. Their algorithm (the one using dense data) com-
putes the exact value of the translational component of the optical flow, not only its direction.
Some of its drawbacks are the following: it is computationally expensive and noise-sensitive;
it assumes that the surface function is smooth enough so that it can be approximated by the
linear terms of X and Y; and it is biologically implausible. Altogether, it is given more as an
existence proof that the computation of the motion parameters and structure from motion are
possible from images only. The approximate algorithm of section 3 shows that if we do not
require a complete computation of the motion parameters then some important features of the
motion can be computed more easily and in parallel, more reliably, and by a more biologically
plausible algorithm. It can also be used before a more exact algorithm to obtain an initial
estimate of the location of the FOE and the translational componeat of the motion.

6 Summary

This work has been motivated by two observations. First, the computation of the motion
parameters or the cameras’ calibration is generally complicated, time consuming and error
sensitive. Second, it is not clear that biological vision needs such a computation or that it uses
the exact recovery of the depth of a surface at each point. From the analysis presented above
we can conclude that the direct computation of some interesting motion and shape invariants
from matched images may be computationally easier, more parallel in nature, and more robust
in the presence of errors. More specifically, it has been shown that the sign of the Gaussian
curvature of a surface patch can be obtained from motion or stereo disparities with a simple,
biologically plausible, operator. The focus of expansion can also be obtained from this analysis.
The surface can further be classified as convex, concave, planar, cylindrical, or saddle-point. If
a sufficient amount of interesting quantities can be computed in a similar way (which depends
of course on the goal of the computation), the exact motion parameters and shape need not
be computed at all. This may be the case for the limited purposes of biological vision like
recognition and navigation.

7 Appendix
Following are the proofs of the propositions in section 3.

Proposition 1 Let Py denote a point on the surface of some object whose projection in the
first image is Og. Let Py and P, denote two other points on the same surface whose projections
in the first image are O, and O,, and where Oy, O; and O, are collinear. Let Oy, Oy, and O,
be the projections of the same three points in a second image. Assume the motion.is backward
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{
{away from the focus of expansion). Then the sign of the normal curvature of the curve (

vassing through Py, Py. and P, can be determined as follows:

o if the smaller angle through Og. Oy and Oa is turned towards the focus of erpansion then
the normal curvature of { is positive (see figure 3a).

o if Op. Oy and O, are collinear then the normal curvature of { is 0 (see figure 3b).

o if the smaller angle through Og, O, and O, is turned away from the focus of expansion
then the normal curvature of  is negative (see figure 5c).

In forward motion (towards the focus of ezpansion), the interpretation of the angle is reversed.
! The motion of the coordinate system is defined to be a rotation followed by a translation.)

Proot:

Let w; denote the tangent of the curve { whose sign of curvature we want to estimate. The
tangents to all the curves on the surface passing through Pp must lie in the tangent plane at Py
at esnme angle A (e.a. 19 in figure 13). The normal curvature of any curve with tangent wy is
equal to the exact curvature of a single curve with tangent wg. This curve is the intersection of
the normal section, the plane through wy and the normal, with the surface (see figure 13). Let
ug be the intersection of the normal plane and the surface. It is therefore sufficient to compute
the curvature of ug to obtain the normal curvature of {. Let ny denote the curvature of ug.

Consider the lower part of figure 13. Let NV, be some arbitrary axis through F that creates a
sharp angle with V (thatis, N .V, > 0). We define an .V,-section in a similar way to the normal
section: it is the plane that passes through N, and the tangent line wy. The corresponding
.V,-section intersects the surface at a curve ug. Let ng be the curvature of uj, nj lies in the
.V,-section. Since nj is perpendicular to wy, it lies along the projection of N on the N,-section,
either in the direction of .V or —N. Since the angle between N and N, is sharp, so is the angle
between .V, and the projection of V on the N,-section. Thus the sign of n§ with respect to N,
(the sign of 7 - N,) is equal to its sign with respect to the projection of V on the .V,-section.
This, in turn, has the same sign as its sign with respect to N (the sign of 73 - N'), which is the
sign of the normal curvature. Therefore the sign of n3 with respect to N, (the sign of @3 - N,)
is equal to the sign of the normal curvature corresponding to wy (the sign of 7z - V).

The argument reverses when applied to an axis N, that creates an obtuse angle with ¥
(that is, V- N, < 0). It will break down if ¥ and N, are perpendicular (A-" N, = 0), a case
for which the proposition does not hold.

The first image is depicted in figure 14. We choose axis N, to be the line of sight, the line
connecting Py and the first camera. By definition the normal creates a sharp angle with the
line of sight unless it is a boundary where the two lines are perpendicular. For a given wg, the
corresponding V,-section (marked in figure 14 with continuous lines) includes P, P, and P,
(three points on the surface as we have defined before), Op, O, and O, (their projections on
the first image), and the camera’s pinhole. The curve uj is the line passing through Py, P; and
P,. We define nj to be the angle bisector of v, the angle defined by P;, Py and P;. ! (Thus

'This definition can be justified in the following way. The direction of the normal to a plane curve at some
point P is the radius of the circle of curvature, which is the limit of a circle through Py and two neighboring
points P, and P, as they approach P». If some fixed P, and P, are equidistant to P,, the radius of the circle
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Figure 13: Illustration of the normal section (upper part) and the N,-section (lower part), see
text.
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first camera X secoud camera

Figure 14: The \V,-section of a plane containing P;, Po. P; and the first camera.

we can think of uj as a smooth curve passing through £, P, and P, whose tangent at F; is
the line perpendicular to the angle bisector of v.) From the above discussion the sign of the
normal curvature is determined by whether v is turned “towards™ the camera or “away™ from
it. Let P§ be the intersection of the line of sight and the line through P; and P; in the plane
of the .V,-section (see figure 14). Then the question is whether Pj§ is between the camera and
Py or on the other side of Py.

Perspective projection of the N,-section, specifically Py, P1, P», P§ and the camera’s pinhole,
preserves order if all points lie in the half space that is in the field of view of the projection
(or the other half space). Assume that the plane is not projected to a line, that is, the second
camera is not translating on the N,-section, for which case the analysis does not hold. Thus
the question is whether the projection of Pg is between the projections of the camera’s pinhole
and Py or on the other side of the projection of Py. We choose the perspective projection on
the second image, where the P;’s are projected to 9;’s respectively, and the camera is projected
to the focus of expansion. Thus if OF is between the FOE and Op then the normal curvature is
positive, and if OF is on the other side of Op then the curvature is negative. If O = Qg then
Py, P, and P are collineat and the normal curvature is 0. This completes the proof for the
backward motion since then Py, Py, P, and the camera are all in the field of view of the second
camera. If the motion is forward then the first camera is not in the field of view of the second
camera. The axis N, (the line of sight) is projected discontinuously and therefore the meaning

passing through Pi. P, and P; is also the angle bisector of the angle between them v. Thus the angle bisector
serves as a discrete estimator for the direction of the normal given two points like difference operators serve to
approximate derivatives.
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of the angle through the projections of Py, Py and P reverses.

Proposition 2 Let O; as before where Oy and O, are chosen on different sides of Og. Assume
backward motion (the motion is defined now as a translation followed by a rotation). Let

O, = (r,.y;) denote the projections of P, respectively in a second image. as before. Let T =
Fo - 2= [f Oy is chosen such that the angle through Oy, Og and the FOE going clockwise

is smaller than 1%0°, that is, O, is below the sign-bisector in figure 15a, then the sign of T
equals the sign of the normal curvature of (. [f Oy is chosen so that the angle is larger than
1R0° then the sign of T is opposite to the sign of the normal curvature of (. If the angle equals
1307 then the sign of T is identically 0.

Proof:

From the previous proposition, the sign of the normal curvature is determined by whether O
is berween the FOE (the projection of the camera) and Oy or on the other side of Oy (see
figure 15b).

FOE FOE

first image second image

a) b)

Figure 15: The perspective projection of .V,-section assuming Py, Fy, P, and the camera are
on the same field of view: a) first image, b) second image.

From its definition T = tan3; — tan 3, (figure 15b). We know that O; and O, lie on
different sides of the sign-bisector. Assume for simplicity that O; and O lie on different sides
of a parallel to the Y-axis through Og (figure 15b). If O, is below the sign-bisector in figure 15b
then the sign of T is positive iff Of is between the FOE and Op and negative iff OF is on the
other side of Og. That is, the sign of T is equal to the sign of the normal curvature of ¢ if the
angle through O, Op and the FOF going clockwise is smaller than 180°. We have used the
previous proposition for backward motion when the motion is defined as rotation followed by
translation. If the motion is redefined as translation followed by rotation, and backward motion
is again assumed. then this condition is equivalent to the following: the sign of T is equal to




the sien of the normal curvature of ¢ if the angle through O,. Op and the FOE going clockwise
is smaller than 180%. In a similar way. the sign of T is the opposite of the sign of the normal
curvature of J if the angle through O;. Og and the FOE going clockwise is larger than 180Y. If
the angle through Oy, Oy and the FOE equals 180°, P,. P;. P’ and the camera are collinear
and therefore T = 0. This completes the proof of the proposition.

When O; and O; are both on the same side of a parallel to the ¥ -axis through Oqg the
problem can be easily fixed. This case is detected when the sign of r, — ro equals the sign of
r1 — zg. It is sufficient to push either O, or O to be almost parallel to the Y-axis on the other
side (£x). Usually, though, the combined use of T and Y~! eliminates the problem.

References

‘1 David Marr and Tomaso Poggio. A computational theory of human stereo vision. Proceed-

ings of the Royal Society of London B, 204:301-328, 1979.

2] Shimon Ullman. Computational studies in the interpretaiion of structure and motion:
summary and extension. In J. Beck, B. Hope. and Azriel Rosenfeld. editors. Human and
Machine Vision. New York: Academic Press, 1983.

3] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projec-
tions. Vature, 293:133~-133, 19%81.

“+ R.Y. Tsai and T.S. Huang. Uniqueness and estimation of three dimensional motion pa-
rameters of rigid objects with curved surfaces. [FEE Transactions on Pattern Analysis
and Muachine Intelligence, 6:13-27, 1984.

5! K. Prazdny. Egomotion and relative depth map from optical flow. Biological Cybernetics.
36:37-102, 1980.

(6] Shimon Ullman. Maximizing rigidity: the incremental recovery of 3-d structure from rigid
and rubbery motion. Perception, 13:255-274, 1984,

{7] H.C. Longuet-Higgins and K. Prazdny. The interpretation of a moving retinal image. Proc.
R. Soc. Lond. B, 208:385-397, 1980.

]! W. B. Thompson and J. K. Kearny. Inexact vision. In Workshop on Motion. Representation
and Analysis, pages 15-22, May 1986.

91 Alessandro Verri and Tomaso Poggio. Against quantitative optical flow. In Proceedings of
the International Conference on Computer Vision, pages 171-180, June 1987.

(10] S. Edelman and T. Poggio. Representatione in high-level vision: reassessing the inverse
optics paradigm. In Proceedings Image Understanding Workshop, April 1989.

11] R. C. Nelson and J. Aloimonos. Using flow field divergence for obstacle avoidance: towards
qualitative vision. In Proceedings of the International Conference on Computer Vision,
pages 188-196, December 1988.

24




2

13]

S

Hanspeter A. Mallot. Heinrich-H. Bulthoff, and James J. Little. Interaction of different
modules in depth perception. In Arvo annual meeting abstract issue, page 398, May 1988,

Michael Brady. Criteria for shape representations. In E J. Beck and A. Rosenfeld. editors.
Human and Machine Vision. Academic Press, New York. 1983,

J. J. Koenderink and A. J. van Doorn. I[nvariant properties of the motion parallax field
due to the movement of rigid bodies relative to an observer. Optica Acta, 22(9):773-791,
1975.

J. J. Koenderink and A. J. van Doorn. Local structure of movement parallax ¢ the plane.
J. Opt. Soc. Am., 66:717-723, 1976.

J. J. Koenderink and A. J. van Doorn. Geometry of binocular vision and a model for
stereopsis. Biological Cybernetics, 21:29-35, 1976.

A. L. Yuille. Zero crossings on lines of curvature. Computer Vision, Graphics, and Image
Processing, 45:68-87, 1989.

A. P. Pentland. Local shading analysis. In A. P. Pentland, editor, From pizels to predicates.
pages 40-77. ablex, New Jersey, 1986.

D. Weinshall. Qualitative depth from stereo, with applications. Technical Report AI-Memo
1007a, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1987.

L. Matin. Eye movement and perceived visual direction. In D. Jameson and L. Hurvich,
editors, Handbook of Physiology, volume 7-4. Heidelberg: Springer, 1972.

J. J. Koenderink and A. J. van Doorn. The singularities of the visual mapping. Biological
Cybernetics, 24:51-59, 1976.

25




